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Preface to Pfeiffer Applied Probability’

The course

This is a "first course" in the sense that it presumes no previous course in probability. The units are
modules taken from the unpublished text: Paul E. Pfeiffer, ELEMENTS OF APPLIED PROBABILITY,
USING MATLAB. The units are numbered as they appear in the text, although of course they may be used
in any desired order. For those who wish to use the order of the text, an outline is provided, with indication
of which modules contain the material.

The mathematical prerequisites are ordinary calculus and the elements of matrix algebra. A few standard
series and integrals are used, and double integrals are evaluated as iterated integrals. The reader who can
evaluate simple integrals can learn quickly from the examples how to deal with the iterated integrals used
in the theory of expectation and conditional expectation. Appendix B (Section 17.2) provides a convenient
compendium of mathematical facts used frequently in this work. And the symbolic toolbox, implementing
MAPLE, may be used to evaluate integrals, if desired.

In addition to an introduction to the essential features of basic probability in terms of a precise mathe-
matical model, the work describes and employs user defined MATLAB procedures and functions (which we
refer to as m-programs, or simply programs) to solve many important problems in basic probability. This
should make the work useful as a stand alone exposition as well as a supplement to any of several current
textbooks.

Most of the programs developed here were written in earlier versions of MATLAB, but have been revised
slightly to make them quite compatible with MATLAB 7. In a few cases, alternate implementations are
available in the Statistics Toolbox, but are implemented here directly from the basic MATLAB program,
so that students need only that program (and the symbolic mathematics toolbox, if they desire its aid in
evaluating integrals).

Since machine methods require precise formulation of problems in appropriate mathematical form, it
is necessary to provide some supplementary analytical material, principally the so-called minterm analysis.
This material is not only important for computational purposes, but is also useful in displaying some of the
structure of the relationships among events.

A probability model

Much of "real world" probabilistic thinking is an amalgam of intuitive, plausible reasoning and of statistical
knowledge and insight. Mathematical probability attempts to to lend precision to such probability analysis
by employing a suitable mathematical model, which embodies the central underlying principles and structure.
A successful model serves as an aid (and sometimes corrective) to this type of thinking.

Certain concepts and patterns have emerged from experience and intuition. The mathematical formu-
lation (the mathematical model) which has most successfully captured these essential ideas is rooted in
measure theory, and is known as the Kolmogorov model, after the brilliant Russian mathematician A.N.
Kolmogorov (1903-1987).

LThis content is available online at <http://cnx.org/content/m23242/1.8/>.
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One cannot prove that a model is correct. Only experience may show whether it is useful (and not
incorrect). The usefulness of the Kolmogorov model is established by examining its structure and show-
ing that patterns of uncertainty and likelihood in any practical situation can be represented adequately.
Developments, such as in this course, have given ample evidence of such usefulness.

The most fruitful approach is characterized by an interplay of

e A formulation of the problem in precise terms of the model and careful mathematical analysis of the
problem so formulated.

e A grasp of the problem based on experience and insight. This underlies both problem formulation
and interpretation of analytical results of the model. Often such insight suggests approaches to the
analytical solution process.

MATLAB: A tool for learning

In this work, we make extensive use of MATLAB as an aid to analysis. I have tried to write the MATLAB
programs in such a way that they constitute useful, ready-made tools for problem solving. Once the user
understands the problems they are designed to solve, the solution strategies used, and the manner in which
these strategies are implemented, the collection of programs should provide a useful resource.

However, my primary aim in exposition and illustration is to aid the learning process and to deepen
insight into the structure of the problems considered and the strategies employed in their solution. Several
features contribute to that end.

1. Application of machine methods of solution requires precise formulation. The data available and the
fundamental assumptions must be organized in an appropriate fashion. The requisite discipline for
such formulation often contributes to enhanced understanding of the problem.

2. The development of a MATLAB program for solution requires careful attention to possible solution
strategies. One cannot instruct the machine without a clear grasp of what is to be done.

3. I give attention to the tasks performed by a program, with a general description of how MATLAB
carries out the tasks. The reader is not required to trace out all the programming details. However,
it is often the case that available MATLAB resources suggest alternative solution strategies. Hence,
for those so inclined, attention to the details may be fruitful. I have included, as a separate collection,
the m-files written for this work. These may be used as patterns for extensions as well as programs in
MATLAB for computations. Appendix A (Section 17.1) provides a directory of these m-files.

4. Some of the details in the MATLAB script are presentation details. These are refinements which are
not essential to the solution of the problem. But they make the programs more readily usable. And
they provide illustrations of MATLAB techniques for those who may wish to write their own programs.
I hope many will be inclined to go beyond this work, modifying current programs or writing new ones.

An Invitation to Experiment and Explore

Because the programs provide considerable freedom from the burden of computation and the tyranny of
tables (with their limited ranges and parameter values), standard problems may be approached with a new
spirit of experiment and discovery. When a program is selected (or written), it embodies one method of
solution. There may be others which are readily implemented. The reader is invited, even urged, to explore!
The user may experiment to whatever degree he or she finds useful and interesting. The possibilities are
endless.

Acknowledgments

After many years of teaching probability, I have long since lost track of all those authors and books which
have contributed to the treatment of probability in this work. I am aware of those contributions and am
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Chapter 1

Probability Systems

1.1 Likelihood'

1.1.1 Introduction

Probability models and techniques permeate many important areas of modern life. A variety of types of
random processes, reliability models and techniques, and statistical considerations in experimental work play
a significant role in engineering and the physical sciences. The solutions of management decision problems
use as aids decision analysis, waiting line theory, inventory theory, time series, cost analysis under uncertainty
— all rooted in applied probability theory. Methods of statistical analysis employ probability analysis as an
underlying discipline.

Modern probability developments are increasingly sophisticated mathematically. To utilize these, the
practitioner needs a sound conceptual basis which, fortunately, can be attained at a moderate level of
mathematical sophistication. There is need to develop a feel for the structure of the underlying mathematical
model, for the role of various types of assumptions, and for the principal strategies of problem formulation
and solution.

Probability has roots that extend far back into antiquity. The notion of “chance” played a central role in
the ubiquitous practice of gambling. But chance acts were often related to magic or religion. For example,
there are numerous instances in the Hebrew Bible in which decisions were made “by lot” or some other
chance mechanism, with the understanding that the outcome was determined by the will of God. In the
New Testament, the book of Acts describes the selection of a successor to Judas Iscariot as one of “the
Twelve.” Two names, Joseph Barsabbas and Matthias, were put forward. The group prayed, then drew lots,
which fell on Matthias.

Early developments of probability as a mathematical discipline, freeing it from its religious and magical
overtones, came as a response to questions about games of chance played repeatedly. The mathematical
formulation owes much to the work of Pierre de Fermat and Blaise Pascal in the seventeenth century. The
game is described in terms of a well defined trial (a play); the result of any trial is one of a specific set of
distinguishable outcomes. Although the result of any play is not predictable, certain “statistical regularities”
of results are observed. The possible results are described in ways that make each result seem equally likely.
If there are N such possible “equally likely” results, each is assigned a probability 1/N.

The developers of mathematical probability also took cues from early work on the analysis of statistical
data. The pioneering work of John Graunt in the seventeenth century was directed to the study of “vital
statistics,” such as records of births, deaths, and various diseases. Graunt determined the fractions of people
in London who died from various diseases during a period in the early seventeenth century. Some thirty
years later, in 1693, Edmond Halley (for whom the comet is named) published the first life insurance tables.
To apply these results, one considers the selection of a member of the population on a chance basis. One

LThis content is available online at <http://cnx.org/content/m23243/1.8/>.
Available for free at Connexions <http://cnx.org/content/col10708/1.6>

5



6 CHAPTER 1. PROBABILITY SYSTEMS

then assigns the probability that such a person will have a given disease. The trial here is the selection of
a person, but the interest is in certain characteristics. We may speak of the event that the person selected
will die of a certain disease— say “consumption.” Although it is a person who is selected, it is death from
consumption which is of interest. Out of this statistical formulation came an interest not only in probabilities
as fractions or relative frequencies but also in averages or expectatons. These averages play an essential role
in modern probability.

We do not attempt to trace this history, which was long and halting, though marked by flashes of
brilliance. Certain concepts and patterns which emerged from experience and intuition called for clarifica-
tion. We move rather directly to the mathematical formulation (the “mathematical model”) which has most
successfully captured these essential ideas. This is the model, rooted in the mathematical system known as
measure theory, is called the Kolmogorov model, after the brilliant Russian mathematician A.N. Kolmogorov
(1903-1987). Kolmogorov succeeded in bringing together various developments begun at the turn of the cen-
tury, principally in the work of E. Borel and H. Lebesgue on measure theory. Kolmogorov published his
epochal work in German in 1933. It was translated into English and published in 1956 by Chelsea Publishing
Company.

1.1.2 Outcomes and events

Probability applies to situations in which there is a well defined trial whose possible outcomes are found
among those in a given basic set. The following are typical.

e A pair of dice is rolled; the outcome is viewed in terms of the numbers of spots appearing on the top
faces of the two dice. If the outcome is viewed as an ordered pair, there are thirty six equally likely
outcomes. If the outcome is characterized by the total number of spots on the two die, then there are
eleven possible outcomes (not equally likely).

e A poll of a voting population is taken. Outcomes are characterized by responses to a question. For
example, the responses may be categorized as positive (or favorable), negative (or unfavorable), or
uncertain (or no opinion).

e A measurement is made. The outcome is described by a number representing the magnitude of the
quantity in appropriate units. In some cases, the possible values fall among a finite set of integers. In
other cases, the possible values may be any real number (usually in some specified interval).

e Much more sophisticated notions of outcomes are encountered in modern theory. For example, in
communication or control theory, a communication system experiences only one signal stream in its
life. But a communication system is not designed for a single signal stream. It is designed for one of
an infinite set of possible signals. The likelihood of encountering a certain kind of signal is important
in the design. Such signals constitute a subset of the larger set of all possible signals.

These considerations show that our probability model must deal with

e A trial which results in (selects) an outcome from a set of conceptually possible outcomes. The trial
is not successfully completed until one of the outcomes is realized.

e Associated with each outcome is a certain characteristic (or combination of characteristics) pertinent
to the problem at hand. In polling for political opinions, it is a person who is selected. That person
has many features and characteristics (race, age, gender, occupation, religious preference, preferences
for food, etc.). But the primary feature, which characterizes the outcome, is the political opinion on
the question asked. Of course, some of the other features may be of interest for analysis of the poll.

Inherent in informal thought, as well as in precise analysis, is the notion of an event to which a probability
may be assigned as a measure of the likelihood the event will occur on any trial. A successful mathematical
model must formulate these notions with precision. An event is identified in terms of the characteristic of
the outcome observed. The event “a favorable response” to a polling question occurs if the outcome observed
has that characteristic; i.e., iff (if and only if) the respondent replies in the affirmative. A hand of five cards
is drawn. The event “one or more aces” occurs iff the hand actually drawn has at least one ace. If that same

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



hand has two cards of the suit of clubs, then the event “two clubs” has occurred. These considerations lead
to the following definition.

Definition. The event determined by some characteristic of the possible outcomes is the set of those
outcomes having this characteristic. The event occurs iff the outcome of the trial is a member of that set
(i.e., has the characteristic determining the event).

The event of throwing a “seven” with a pair of dice (which we call the event SEVEN) consists of the
set of those possible outcomes with a total of seven spots turned up. The event SEVEN occurs iff the
outcome is one of those combinations with a total of seven spots (i.e., belongs to the event SEVEN).
This could be represented as follows. Suppose the two dice are distinguished (say by color) and a
picture is taken of each of the thirty six possible combinations. On the back of each picture, write the
number of spots. Now the event SEVEN consists of the set of all those pictures with seven on the
back. Throwing the dice is equivalent to selecting randomly one of the thirty six pictures. The event
SEVEN occurs iff the picture selected is one of the set of those pictures with seven on the back.

Observing for a very long (theoretically infinite) time the signal passing through a communication
channel is equivalent to selecting one of the conceptually possible signals. Now such signals have many
characteristics: the maximum peak value, the frequency spectrum, the degree of differentibility, the
average value over a given time period, etc. If the signal has a peak absolute value less than ten volts,
a frequency spectrum essentially limited from 60 herz to 10,000 herz, with peak rate of change 10,000
volts per second, then it is one of the set of signals with those characteristics. The event "the signal has
these characteristics" has occured. This set (event) consists of an uncountable infinity of such signals.

One of the advantages of this formulation of an event as a subset of the basic set of possible outcomes is that
we can use elementary set theory as an aid to formulation. And tools, such as Venn diagrams and indicator
functions (Section 1.3) for studying event combinations, provide powerful aids to establishing and visualizing
relationships between events. We formalize these ideas as follows:

Let Q be the set of all possible outcomes of the basic trial or experiment. We call this the basic space
or the sure event, since if the trial is carried out successfully the outcome will be in 2; hence, the event
Q is sure to occur on any trial. We must specify unambiguously what outcomes are “possible.” In
flipping a coin, the only accepted outcomes are “heads” and “tails.” Should the coin stand on its edge,
say by leaning against a wall, we would ordinarily consider that to be the result of an improper trial.
As we note above, each outcome may have several characteristics which are the basis for describing
events. Suppose we are drawing a single card from an ordinary deck of playing cards. Each card is
characterized by a “face value” (two through ten, jack, queen, king, ace) and a “suit” (clubs, hearts,
diamonds, spades). An ace is drawn (the event ACE occurs) iff the outcome (card) belongs to the
set (event) of four cards with ace as face value. A heart is drawn iff the card belongs to the set of
thirteen cards with heart as suit. Now it may be desirable to specify events which involve various
logical combinations of the characteristics. Thus, we may be interested in the event the face value
is jack or king and the suit is heart or spade. The set for jack or king is represented by the union
J U K and the set for heart or spade is the union H US. The occurrence of both conditions means the
outcome is in the intersection (common part) designated by N. Thus the event referred to is

E=(JUK)N(HUS) (1.1)

The notation of set theory thus makes possible a precise formulation of the event F.

Sometimes we are interested in the situation in which the outcome does not have one of the charac-
teristics. Thus the set of cards which does not have suit heart is the set of all those outcomes not in
event H. In set theory, this is the complementary set (event) H€.

Events are mutually exclusive iff not more than one can occur on any trial. This is the condition that
the sets representing the events are disjoint (i.e., have no members in common).

The notion of the impossible event is useful. The impossible event is, in set terminology, the empty
set@. Event @ cannot occur, since it has no members (contains no outcomes). One use of @ is to
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8 CHAPTER 1. PROBABILITY SYSTEMS

provide a simple way of indicating that two sets are mutually exclusive. To say AB = & (here we
use the alternate AB for AN B) is to assert that events A and B have no outcome in common, hence
cannot both occur on any given trial.

e Set inclusion provides a convenient way to designate the fact that event A implies event B, in the sense
that the occurrence of A requires the occurrence of B. The set relation A C B signifies that every
element (outcome) in A is also in B. If a trial results in an outcome in A (event A occurs), then that
outcome is also in B (so that event B has occurred).

The language and notaton of sets provide a precise language and notation for events and their combinations.
We collect below some useful facts about logical (often called Boolean) combinations of events (as sets). The
notion of Boolean combinations may be applied to arbitrary classes of sets. For this reason, it is sometimes
useful to use an index set to designate membership. We say the index J is countable if it is finite or countably
infinite; otherwise it is uncountable. In the following it may be arbitrary.

{A4; :i € J} is the class of sets A;, one for each index ¢ in the index set J (1.2)
For example, if J = {1, 2, 3} then {4; : i € J} is the class {41, Aa, A3}, and

JAi=A41u4dud;, ()4 =A41Nn4N 43, (1.3)
i€J icJ
If J={1,2, ---} then {4, : i € J} is the sequence {A4; : 1 <i}. and

o0 o0
UAi:UAi, ﬂAi:ﬂAi (1.4)
= i=1 ieJ i=1
If event E is the union of a class of events, then event E occurs iff at least one event in the class occurs. If
F is the intersection of a class of events, then event F occurs iff all events in the class occur on the trial.

The role of disjoint unions is so important in probability that it is useful to have a symbol indicating
the union of a disjoint class. We use the big V to indicate that the sets combined in the union are disjoint.
Thus, for example, we write

A= \/ A; to signify A = U A; with the proviso that the A; form a disjoint class (1.5)

i=1 i=1

Example 1.1: Events derived from a class
Consider the class {E1, Eo, E3} of events. Let Ay be the event that exactly k occur on a trial and
By be the event that k or more occur on a trial. Then

Ay =  ESESES, A, =  E\ESES\| ESE,ES\ ESESE; Ay, =
E\EyES\] E\ESE3\] ESExEs, As = E\EyEs
The unions are disjoint since each pair of terms has E; in one and E;° in the other, for at least
one i. Now the By can be expressed in terms of the A,. For example
By = Ay \/ A3 (1.7)
The union in this expression for B; is disjoint since we cannot have exactly two of the E; occur
and exactly three of them occur on the same trial. We may express B; directly in terms of the E;
as follows:
By = FE1E; UFE FE3U EyEs (1.8)
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Here the union is not disjoint, in general. However, if one pair, say {E;, Es} is disjoint, then
E1E3 = @ and the pair {E1 Es, E2E5} is disjoint (draw a Venn diagram). Suppose C is the event
the first two occur or the last two occur but no other combination. Then

C = E\E,E5 \/ E{E,E; (1.9)
Let D be the event that one or three of the events occur.
D = Ay \/ As = E\ESE§ \| EfE>E5 \| EfESE; \| E\E>E; (1.10)

Two important patterns in set theory known as DeMorgan’s rules are useful in the handling of events. For
an arbitrary class {A; : i € J} of events,

U

icJ

C

= (A and

icJ

C

=45 (1.11)

icJ

N4

icJ

An outcome is not in the union (i.e., not in at least one) of the A; iff it fails to be in all A;, and it is not in
the intersection (i.e. not in all) iff it fails to be in at least one of the A;.

Example 1.2: Continuation of Example 1.1 (Events derived from a class)
Express the event of no more than one occurrence of the events in {E;, Eo, E3} as Bo°.

BS = [E1Ey U E\E3 U By Es)° = (E§ U ES) (E5 U ES) (E3ES) = E{E5 U E{ES U ESES (1.12)

The last expression shows that not more than one of the E; occurs iff at least two of them fail to
occur.

1.2 Probability Systems®

1.2.1 Probability measures

In the module "Likelihood" (Section 1.1) we introduce the notion of a basic space 2 of all possible outcomes
of a trial or experiment, events as subsets of the basic space determined by appropriate characteristics of
the outcomes, and logical or Boolean combinations of the events (unions, intersections, and complements)
corresponding to logical combinations of the defining characteristics.

Occurrence or nonoccurrence of an event is determined by characteristics or attributes of the outcome
observed on a trial. Performing the trial is visualized as selecting an outcome from the basic set. An
event occurs whenever the selected outcome is a member of the subset representing the event. As described
so far, the selection process could be quite deliberate, with a prescribed outcome, or it could involve the
uncertainties associated with “chance.” Probability enters the picture only in the latter situation. Before the
trial is performed, there is uncertainty about which of these latent possibilities will be realized. Probability
traditionally is a number assigned to an event indicating the likelihood of the occurrence of that event on
any trial.

We begin by looking at the classical model which first successfully formulated probability ideas in math-
ematical form. We use modern terminology and notation to describe it.

Classical probability

1. The basic space {2 consists of a finite number N of possible outcomes.

- There are thirty six possible outcomes of throwing two dice.

2This content is available online at <http://cnx.org/content/m23244/1.8/>.
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10 CHAPTER 1. PROBABILITY SYSTEMS

- There are C' (52,5) = % = 2598960 different hands of five cards (order not important).

- There are 2° = 32 results (sequences of heads or tails) of flipping five coins.
2. Each possible outcome is assigned a probability 1/N
3. If event (subset) A has N4 elements, then the probability assigned event A is

P(A) = Ny/N (i.e., the fraction favorable to A) (1.13)

With this definition of probability, each event A is assigned a unique probability, which may be determined
by counting N4, the number of elements in A (in the classical language, the number of outcomes "favorable"
to the event) and N the total number of possible outcomes in the sure event €.

Example 1.3: Probabilities for hands of cards
Counsider the experiment of drawing a hand of five cards from an ordinary deck of 52 playing cards.
The number of outcomes, as noted above, is N = C(52,5) = 2598960. What is the probability
of drawing a hand with exactly two aces? What is the probability of drawing a hand with two or
more aces? What is the probability of not more than one ace?

SOLUTION

Let A be the event of exactly two aces, B be the event of exactly three aces, and C be the event
of exactly four aces. In the first problem, we must count the number N4 of ways of drawing a hand
with two aces. We select two aces from the four, and select the other three cards from the 48 non
aces. Thus

N4 103776
TN 2598060

There are two or more aces iff there are exactly two or exactly three or exactly four. Thus the
event D of two or more is D = A\/ B\/ C. Since A, B, C are mutually exclusive,

Ny =C (4,2)C (48,3) = 103776, so that P (A) ~ 0.0399 (1.14)

Np=Nas+Np+Nec=C(4,2)C(48,3)+C(4,3)C(48,2) + C(4,4)C (48,1) =  (1.15)

103776 + 4512 4 48 = 108336

so that P (D) & 0.0417. There is one ace or none iff there are not two or more aces. We thus
want P (D¢). Now the number in D¢ is the number not in D which is N — Np, so that

P (D) = _T =1- 7 =1-P(D)=0.9583 (1.16)

— 0O
This example illustrates several important properties of the classical probability.

1. P(A) = N4/N is a nonnegative quantity.

2. PQ)=N/N=1

3. If A, B,C are mutually exclusive, then the number in the disjoint union is the sum of the numbers in
the individual events, so that

P(A\/B\/C):P(A)—i—P(B)—i—P(C) (1.17)

Several other elementary properties of the classical probability may be identified. It turns out that they can
be derived from these three. Although the classical model is highly useful, and an extensive theory has been
developed, it is not really satisfactory for many applications (the communications problem, for example).
We seek a more general model which includes classical probability as a special case and is thus an extension
of it. We adopt the Kolmogorov model (introduced by the Russian mathematician A. N. Kolmogorov) which
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captures the essential ideas in a remarkably successful way. Of course, no model is ever completely successful.
Reality always seems to escape our logical nets.

The Kolmogorov model is grounded in abstract measure theory. A full explication requires a level of
mathematical sophistication inappropriate for a treatment such as this. But most of the concepts and many
of the results are elementary and easily grasped. And many technical mathematical considerations are not
important for applications at the level of this introductory treatment and may be disregarded. We borrow
from measure theory a few key facts which are either very plausible or which can be understood at a practical
level. This enables us to utilize a very powerful mathematical system for representing practical problems in
a manner that leads to both insight and useful strategies of solution.

Our approach is to begin with the notion of events as sets introduced above, then to introduce probability
as a number assigned to events subject to certain conditions which become definitive properties. Gradually
we introduce and utilize additional concepts to build progressively a powerful and useful discipline. The
fundamental properties needed are just those illustrated in Example 1.3 (Probabilities for hands of cards)
for the classical case.

Definition

A probability system consists of a basic set 2 of elementary outcomes of a trial or experiment, a class of
events as subsets of the basic space, and a probability measure P (-) which assigns values to the events in
accordance with the following rules:

(P1): For any event A, the probability P (A) > 0.

(P2): The probability of the sure event P (2) = 1.

(P3): Countable additivity. If {A; : 1 € J} is a mutually exclusive, countable class of events, then the
probability of the disjoint union is the sum of the individual probabilities.

The necessity of the mutual exclusiveness (disjointedness) is illustrated in Example 1.3 (Probabilities for
hands of cards). If the sets were not disjoint, probability would be counted more than once in the sum. A
probability, as defined, is abstract—simply a number assigned to each set representing an event. But we can
give it an interpretation which helps to visualize the various patterns and relationships encountered. We may
think of probability as mass assigned to an event. The total unit mass is assigned to the basic set 2. The
additivity property for disjoint sets makes the mass interpretation consistent. We can use this interpretation
as a precise representation. Repeatedly we refer to the probability mass assigned a given set. The mass
is proportional to the weight, so sometimes we speak informally of the weight rather than the mass. Now
a mass assignment with three properties does not seem a very promising beginning. But we soon expand
this rudimentary list of properties. We use the mass interpretation to help visualize the properties, but are
primarily concerned to interpret them in terms of likelihoods.

(P4): P(A°) =1— P(A). This follows from additivity and the fact that

1=P(Q) :P(A\/AC) = P(A) + P (A% (1.18)

(P5): P (@) = 0. The empty set represents an impossible event. It has no members, hence cannot occur.
It seems reasonable that it should be assigned zero probability (mass). Since @ = Q°, this follows
logically from (P4) ("(P4)", p. 11) and (P2) ("(P2)", p. 11).
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Figure 1.18: Partitions of the union AU B.

(P6): If A C B, then P (A) < P(B). From the mass point of view, every point in A is also in B, so that B
must have at least as much mass as A. Now the relationship A C B means that if A occurs, B must
also. Hence B is at least as likely to occur as A. From a purely formal point of view, we have

B=A\/A°B sothat P(B)=P(A)+P(A°B)>P(A) since P(A°B)>0 (1.19)

P(AUB) =P (A)+ P(A°B) = P (B) + P (AB®) = P (AB°) + P (AB) + P (A°B)

=P(A)+ P(B)— P(AB)
The first three expressions follow from additivity and partitioning of AU B as follows (see Figure 1.18).

(P7):

AUB=A\/A°B=B\/AB°= AB°\/ AB\/ A°B (1.20)

If we add the first two expressions and subtract the third, we get the last expression. In terms of
probability mass, the first expression says the probability in A U B is the probability mass in A plus
the additional probability mass in the part of B which is not in A. A similar interpretation holds for
the second expression. The third is the probability in the common part plus the extra in A and the
extra in B. If we add the mass in A and B we have counted the mass in the common part twice. The
last expression shows that we correct this by taking away the extra common mass.

(P8): If {B; : i € J} is a countable, disjoint class and A is contained in the union, then

A=\/ AB; sothat P(A)=)_ P(AB;) (1.21)

icJ i€J
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(P9): Subadditivity. If A =J;2, A;, then P(A) < >°°, P(A;). This follows from countable additivity,
property (P6) ("(P6)", p. 12), and the fact (Partitions)

A=|JA;=\/ Bi, where B;=A;A{A;--- A | C A (1.22)

1 i=1

o

7

This includes as a special case the union of a finite number of events.

Some of these properties, such as (P4) ("(P4)", p. 11), (P5) ("(P5)", p. 11), and (P6) ("(P6)", p. 12), are
so elementary that it seems they should be included in the defining statement. This would not be incorrect,
but would be inefficient. If we have an assignment of numbers to the events, we need only establish (P1)
("(P1)", p. 11), (P2) ("(P2)", p. 11), and (P3) ("(P3)", p. 11) to be able to assert that the assignment
constitutes a probability measure. And the other properties follow as logical consequences.

Flexibility at a price

In moving beyond the classical model, we have gained great flexibility and adaptability of the model.
It may be used for systems in which the number of outcomes is infinite (countably or uncountably). It
does not require a uniform distribution of the probability mass among the outcomes. For example, the
dice problem may be handled directly by assigning the appropriate probabilities to the various numbers of
total spots, 2 through 12. As we see in the treatment of conditional probability (Section 3.1), we make
new probability assignments (i.e., introduce new probability measures) when partial information about the
outcome is obtained.

But this freedom is obtained at a price. In the classical case, the probability value to be assigned an event
is clearly defined (although it may be very difficult to perform the required counting). In the general case,
we must resort to experience, structure of the system studied, experiment, or statistical studies to assign
probabilities.

The existence of uncertainty due to “chance” or “randomness” does not necessarily imply that the act of
performing the trial is haphazard. The trial may be quite carefully planned; the contingency may be the result
of factors beyond the control or knowledge of the experimenter. The mechanism of chance (i.e., the source
of the uncertainty) may depend upon the nature of the actual process or system observed. For example, in
taking an hourly temperature profile on a given day at a weather station, the principal variations are not due
to experimental error but rather to unknown factors which converge to provide the specific weather pattern
experienced. In the case of an uncorrected digital transmission error, the cause of uncertainty lies in the
intricacies of the correction mechanisms and the perturbations produced by a very complex environment. A
patient at a clinic may be self selected. Before his or her appearance and the result of a test, the physician
may not know which patient with which condition will appear. In each case, from the point of view of the
experimenter, the cause is simply attributed to “chance.” Whether one sees this as an “act of the gods” or
simply the result of a configuration of physical or behavioral causes too complex to analyze, the situation is
one of uncertainty, before the trial, about which outcome will present itself.

If there were complete uncertainty, the situation would be chaotic. But this is not usually the case.
While there is an extremely large number of possible hourly temperature profiles, a substantial subset of
these has very little likelihood of occurring. For example, profiles in which successive hourly temperatures
alternate between very high then very low values throughout the day constitute an unlikely subset (event).
One normally expects trends in temperatures over the 24 hour period. Although a traffic engineer does not
know exactly how many vehicles will be observed in a given time period, experience provides some idea what
range of values to expect. While there is uncertainty about which patient, with which symptoms, will appear
at a clinic, a physician certainly knows approximately what fraction of the clinic’s patients have the disease
in question. In a game of chance, analyzed into “equally likely” outcomes, the assumption of equal likelihood
is based on knowledge of symmetries and structural regularities in the mechanism by which the game is
carried out. And the number of outcomes associated with a given event is known, or may be determined.

In each case, there is some basis in statistical data on past experience or knowledge of structure, regularity,
and symmetry in the system under observation which makes it possible to assign likelihoods to the occurrence
of various events. It is this ability to assign likelihoods to the various events which characterizes applied
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probability. However determined, probability is a number assigned to events to indicate their likelihood of
occurrence. The assignments must be consistent with the defining properties (P1) ("(P1)", p. 11), (P2)
("(P2)", p. 11), (P3) ("(P3)", p. 11) along with derived properties (P4) through (P9) (p. 11) (plus others
which may also be derived from these). Since the probabilities are not “built in,” as in the classical case, a
prime role of probability theory is to derive other probabilities from a set of given probabilites.

1.3 Interpretations’

1.3.1 What is Probability?

The formal probability system is a model whose usefulness can only be established by examining its structure
and determining whether patterns of uncertainty and likelihood in any practical situation can be represented
adequately. With the exception of the sure event and the impossible event, the model does not tell us how to
assign probability to any given event. The formal system is consistent with many probability assignments,
just as the notion of mass is consistent with many different mass assignments to sets in the basic space.

The defining properties (P1) ("(P1)", p. 11), (P2) ("(P2)", p. 11), (P3) ("(P3)", p. 11) and derived
properties provide consistency rules for making probability assignments. One cannot assign negative proba-
bilities or probabilities greater than one. The sure event is assigned probability one. If two or more events
are mutually exclusive, the total probability assigned to the union must equal the sum of the probabilities
of the separate events. Any assignment of probability consistent with these conditions is allowed.

One may not know the probability assignment to every event. Just as the defining conditions put
constraints on allowable probability assignments, they also provide important structure. A typical applied
problem provides the probabilities of members of a class of events (perhaps only a few) from which to
determine the probabilities of other events of interest. We consider an important class of such problems in
the next chapter.

There is a variety of points of view as to how probability should be interpreted. These impact the manner
in which probabilities are assigned (or assumed). One important dichotomy among practitioners.

e Omne group believes probability is objective in the sense that it is something inherent in the nature of
things. It is to be discovered, if possible, by analysis and experiment. Whether we can determine it or
not, “it is there.”

e Another group insists that probability is a condition of the mind of the person making the probability
assessment. From this point of view, the laws of probability simply impose rational consistency upon
the way one assigns probabilities to events. Various attempts have been made to find objective ways
to measure the strength of one’s belief or degree of certainty that an event will occur. The probability
P (A) expresses the degree of certainty one feels that event A will occur. One approach to characterizing
an individual’s degree of certainty is to equate his assessment of P (A) with the amount a he is willing
to pay to play a game which returns one unit of money if A occurs, for a gain of (1 — a), and returns
zero if A does not occur, for a gain of —a. Behind this formulation is the notion of a fair game, in
which the “expected” or “average” gain is zero.

The early work on probability began with a study of relative frequencies of occurrence of an event under
repeated but independent trials. This idea is so imbedded in much intuitive thought about probability that
some probabilists have insisted that it must be built into the definition of probability. This approach has not
been entirely successful mathematically and has not attracted much of a following among either theoretical or
applied probabilists. In the model we adopt, there is a fundamental limit theorem, known as Borel’s theorem,
which may be interpreted “if a trial is performed a large number of times in an independent manner, the
fraction of times that event A occurs approaches as a limit the value P (A). Establishing this result (which
we do not do in this treatment) provides a formal validation of the intuitive notion that lay behind the
early attempts to formulate probabilities. Inveterate gamblers had noted long-run statistical regularities,

3This content is available online at <http://cnx.org/content/m23246,/1.8/>.
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and sought explanations from their mathematically gifted friends. From this point of view, probability is
meaningful only in repeatable situations. Those who hold this view usually assume an objective view of
probability. It is a number determined by the nature of reality, to be discovered by repeated experiment.

There are many applications of probability in which the relative frequency point of view is not feasible.
Examples include predictions of the weather, the outcome of a game or a horse race, the performance of an
individual on a particular job, the success of a newly designed computer. These are unique, nonrepeatable
trials. As the popular expression has it, “You only go around once.” Sometimes, probabilities in these
situations may be quite subjective. As a matter of fact, those who take a subjective view tend to think
in terms of such problems, whereas those who take an objective view usually emphasize the frequency
interpretation.

Example 1.4: Subjective probability and a football game

The probability that one’s favorite football team will win the next Superbowl Game may well
be only a subjective probability of the bettor. This is certainly not a probability that can be
determined by a large number of repeated trials. The game is only played once. However, the
subjective assessment of probabilities may be based on intimate knowledge of relative strengths
and weaknesses of the teams involved, as well as factors such as weather, injuries, and experience.
There may be a considerable objective basis for the subjective assignment of probability. In fact,
there is often a hidden “frequentist” element in the subjective evaluation. There is an assessment
(perhaps unrealized) that in similar situations the frequencies tend to coincide with the value
subjectively assigned.

Example 1.5: The probability of rain
Newscasts often report that the probability of rain of is 20 percent or 60 percent or some other
figure. There are several difficulties here.

e To use the formal mathematical model, there must be precision in determining an event.
An event either occurs or it does not. How do we determine whether it has rained or not?
Must there be a measurable amount? Where must this rain fall to be counted? During what
time period? Even if there is agreement on the area, the amount, and the time period, there
remains ambiguity: one cannot say with logical certainty the event did occur or it did not
occur. Nevertheless, in this and other similar situations, use of the concept of an event may be
helpful even if the description is not definitive. There is usually enough practical agreement
for the concept to be useful.

e What does a 30 percent probability of rain mean? Does it mean that if the prediction is correct,
30 percent of the area indicated will get rain (in an agreed amount) during the specified time
period? Or does it mean that 30 percent of the occasions on which such a prediction is made
there will be significant rainfall in the area during the specified time period? Again, the latter
alternative may well hide a frequency interpretation. Does the statement mean that it rains
30 percent of the times when conditions are similar to current conditions?

Regardless of the interpretation, there is some ambiguity about the event and whether it has
occurred. And there is some difficulty with knowing how to interpret the probability figure. While
the precise meaning of a 30 percent probability of rain may be difficult to determine, it is generally
useful to know whether the conditions lead to a 20 percent or a 30 percent or a 40 percent probability
assignment. And there is no doubt that as weather forecasting technology and methodology continue
to improve the weather probability assessments will become increasingly useful.

Another common type of probability situation involves determining the distribution of some characteristic
over a population—usually by a survey. These data are used to answer the question: What is the probability
(likelihood) that a member of the population, chosen “at random” (i.e., on an equally likely basis) will have
a certain characteristic?
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Example 1.6: Empirical probability based on survey data
A survey asks two questions of 300 students: Do you live on campus? Are you satisfied with
the recreational facilities in the student center? Answers to the latter question were categorized
“reasonably satisfied,” “unsatisfied,” or “no definite opinion.” Let C be the event “on campus;” O
be the event “off campus;” S be the event “reasonably satisfied;” U be the event "unsatisfied;” and
N be the event “no definite opinion.” Data are shown in the following table.

Survey Data

Survey Data

S U | N
C | 127 | 31 | 42
O]46 |43 | 11

Table 1.1

If an individual is selected on an equally likely basis from this group of 300, the probability of any
of the events is taken to be the relative frequency of respondents in each category corresponding
to an event. There are 200 on campus members in the population, so P(C) = 200/300 and
P (O) =100/300. The probability that a student selected is on campus and satisfied is taken to be
P (CS)=127/300. The probability a student is either on campus and satisfied or off campus and
not satisfied is

P (OS\/ OU) — P(CS) + P (OU) = 127/300 + 43/300 = 170/300 (1.23)

If there is reason to believe that the population sampled is representative of the entire student
body, then the same probabilities would be applied to any student selected at random from the
entire student body.

It is fortunate that we do not have to declare a single position to be the “correct” viewpoint and interpretation.
The formal model is consistent with any of the views set forth. We are free in any situation to make the
interpretation most meaningful and natural to the problem at hand. It is not necessary to fit all problems
into one conceptual mold; nor is it necessary to change mathematical model each time a different point of
view seems appropriate.

1.3.2 Probability and odds

Often we find it convenient to work with a ratio of probabilities. If A and B are events with positive
probability the odds favoring A over B is the probability ratio P (A) /P (B). If not otherwise specified, B is
taken to be A¢ and we speak of the odds favoring A

P (4) P(4)

O =55 = TP A (1.24)

This expression may be solved algebraically to determine the probability from the odds

04)

PA=1T0m

(1.25)

In particular, if O (A) = a/b then P (A) = 1_7_2% =5

O (A) =0.7/0.3 = 7/3. If the odds favoring A is 5/3, then P (A) =5/ (5+ 3) = 5/8.
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1.3.3 Partitions and Boolean combinations of events

The countable additivity property (P3) ("(P3)", p. 11) places a premium on appropriate partitioning of
events.
Definition. A partition is a mutually exclusive class

{A; i€ J} such that Q= \/ A; (1.26)
ieJ

A partition of event A is a mutually exclusive class

{Ai:ieJ} suchthat A= \/ 4 (1.27)
i€J

Remarks.

e A partition is a mutually exclusive class of events such that one (and only one) must occur on each
trial.

e A partition of event A is a mutually exclusive class of events such that A occurs iff one (and only one)
of the A; occurs.

e A partition (no qualifier) is taken to be a partition of the sure event ().

o If class {B; : 8 € J} is mutually exclusive and A 