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Abstract: The unmanned surface vehicle (USV) is significantly affected by the ocean environment 
and weather conditions when navigating. The energy consumption is large, which is not conducive 
to completing water tasks. This study investigates the global energy-efficient path planning problem 
for the USV, wherein the goal is to obtain an optimal path under the interference of the ocean envi-
ronment and control the USV to avoid static obstacles and arrive at its destination. Firstly, this paper 
extracts the coastline coordinates and water depth data from the S-57 electronic chart, applying the 
Voronoi diagram to describe spatial object information preliminarily. Secondly, the dynamic, safe 
water depth model is obtained using the improved Voronoi diagram algorithm after superimposing 
the interpolated tide with the water depth data. In order to construct the total energy consumption 
model, the mathematical model of wind and current is introduced into the linear dynamics model 
of a USV. Additionally, the timing breakpoints are planned. According to the energy consumption 
model, this paper improves the A* algorithm to replan the path to consider the distance costs and 
variation of ocean data in each timing breakpoint. Finally, this paper proposes a new path optimi-
zation algorithm to reduce the waypoints and smooth the path. Simulations verified the effective-
ness of the method. The energy consumption in a favorable situation is less than in a counter situa-
tion. The higher the USV velocity, the higher the energy consumption. The proposed dynamic en-
ergy-efficient path considers the distance, ensures a shorter range, and improves the endurance of 
the USV, which is in line with the actual navigation requirement. 

Keywords: path planning; energy consumption model; the Voronoi diagram; the current and wind 
model; A* algorithm 
 

1. Introduction 
1.1. Research Background 

In the 21st century, humanity has entered a period of large-scale exploitation and 
utilization of the ocean. The ocean plays a crucial role in economic development patterns. 
It is necessary to enhance the ability to explore marine resources and strengthen the pro-
tection of coastal zones and the marine ecological environment. However, there are many 
problems in the traditional offshore operation mode. For example, conventional hydro-
logical exploration adopts the artificial method, which requires professional sampling or 
exploration personnel to take samples at sea for experimental analysis. As a result, the 
cost is high, the efficiency is too slow, and the natural conditions are easy to limit. There-
fore, it is not easy to achieve large-scale and continuous detection. Traditional operations 
to safeguard national maritime sovereignty, such as port security, guard patrol, and mar-
itime search and rescue, mainly rely on the support of large sums of money platforms, 
which are costly and risky. With the intellectual development of marine equipment, un-
manned monitoring platforms should arrive. The unmanned surface vehicle (USV) [1–3] 
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is one of the small surface boats widely used in maritime mapping, hydrological monitor-
ing, maritime surveillance reconnaissance, anti-mine warfare, and other military and ci-
vilian fields. It provides convenience for real-time control of marine dynamics and moni-
toring the marine environment. The USV is typically modular in design, enabling it to 
perform different tasks. Its high speed and high maneuverability allow it to quickly nav-
igate specific waters, such as shallow water and narrow lanes, which cannot be reached 
by conventional vessels. It dramatically expands the scope of operation and has a low cost 
[4]. In addition, the USV is favored in developing and applying intelligent marine inspec-
tion equipment because they can be deployed in large numbers and perform more dan-
gerous missions without human exposure. 

When performing specific navigation missions, the USV must navigate autono-
mously according to preset paths and perform tasks, such as terrain survey, mine clear-
ance, water quality sampling, and visual monitoring. This kind of task needs to rely on 
the autonomous navigation control system of the USV to achieve this. At the same time, 
the system’s stability also determines the difficulty of completing the task. The autono-
mous navigation control system mainly has three core parts: guidance, navigation, and 
control [5]. Among them, the guidance system is the critical technology used by the USV, 
which requires that under certain constraints, it has the safest, shortest range, and the most 
energy-efficiency, and that it can automatically plan a stable, continuous, and accessible 
path from start to finish based on assigned tasks, environmental conditions, and naviga-
tion information. It includes global path planning with general environment information 
and local path planning with unknown environment information and path adjustment. 
However, the current path planning technology mainly studies the safest and shortest 
distance, ignoring the energy consumption of the USV. Planning the shortest path does 
not necessarily mean the lowest energy consumption. Navigating against the wind and 
current will lose much energy and the UAV may even fail to reach its destination. A long 
endurance time and low energy consumption are critical USV requirements in surface 
operation tasks, especially in extensive sea area exploration. Therefore, the ability of the 
USV to operate at sea for long periods is needed. Energy consumption is usually reduced 
by developing more efficient electricity supplies or exploiting the environment. However, 
path planning considers the marine environment less, such as the interference of the wind 
and current on the hull. Because the USV is small in size, anti-jamming and low range of 
problems in its mission may not be able to effectively track the given path, which deviates 
from the route, causing unnecessary energy waste and even possible risk of collision. 
Therefore, this paper proposes an hourly dynamic energy-efficient path planning algo-
rithm that considers the distance. 

1.2. Related Studies 
As one of the USV’s critical technologies, path planning has become a hot topic for 

scholars at home and abroad. Many different methods have been proposed in the research 
field for improving endurance by taking energy-saving as a planning index. The three 
steps of path planning: environment modeling, path search, and path optimization are 
discussed. 

The environmental modeling steps include selecting modeling methods with high 
modeling accuracy and high speed. Standard modeling methods include the raster and 
geometric modeling methods [6]. There are many pieces of research based on the raster 
method, and the modeling effect of the raster method is very dependent on the size of the 
grid. If the grid is too large, the accuracy will decrease. Otherwise, too many small grids 
will significantly reduce the running speed. Therefore, it is suitable for spatial modeling 
in robots or small sea areas [7]. Lee T et al. [8] proposed a navigation system based on 
waypoints to establish 3D path planning by considering the ocean environment’s influ-
ence, such as the tide and water depth, the ship’s steering performance, and the ship’s 
attitude at the port of origin and destination. By improving the A* algorithm, the influ-
ences of the current and shallow water effect is introduced into the edge cost function to 
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carry out path planning, and ensures that the USV can fulfill the requirements of offshore 
operations with minimum energy consumption in a large sea area. 

However, there are still some problems, such as the grid method, which results in a 
considerable calculation time. In addition, the time variation of the current cannot simply 
be superimposed on the vessel speed, and the influence of the wind and dynamic model 
of the ship is not considered, therefore, the generated path has a low real reference value. 
Methods based on geometric modeling mainly include the Voronoi diagram and Visibility 
diagram [4,9]. The Voronoi diagram has the advantage of fast computing speeds com-
pared with the Visibility diagram. The operation time of n  vertices is ( log( ))O n n , while 
that of the Visibility diagram is 2( )O n . Therefore, the Voronoi diagram is more suitable 
for large spatial data sets. In addition, the Voronoi diagram has higher security, while the 
Visibility diagram has a particular risk because it is linked to all the vertices. Niu H et al. 
[10] described the properties of Voronoi diagrams and Visibility diagrams by analyzing 
the computational efficiency, extending the coastline to a safe distance, and building a 
preliminary environmental model using the Voronoi diagram. The USV energy consump-
tion model was constructed by analyzing the influence of ocean currents. They were using 
the Dijkstra algorithm to plan energy-efficient paths. Finally, they generated multiple can-
didate paths by combining the Visibility diagram and the Dijkstra algorithm to search for 
the optimal energy-efficient path. The simulation analysis of the Voronoi–Visibility en-
ergy-efficient path (VVEE) and Voronoi–Visibility shortest path took place in the Singa-
pore Strait and Croatia sea. The energy-efficient path is more advantageous than the con-
ventional path under prominent ocean current variation, downstream, and low-speed 
navigation. The method retains the computational efficiency of the Voronoi diagram and 
combines the Visibility diagram’s optimization effect. However, the article still does not 
consider the impact of wind variation on the movement of the USV. In addition, tidal 
changes are also a critical factor when navigating in straits with many islands and reefs, 
which should be comprehensively considered to generate an energy-efficient and safe 
path. 

There are many representative algorithms in the path search algorithm and an opti-
mization module. Path planning algorithms, based on graphics, mainly include Dijkstra 
[11] and the A* algorithm [12]. Garau B et al. [13] proposed an efficient path planning 
algorithm based on A*, considering current ocean data. However, the A* algorithm needs 
enormous computing power and is difficult to deal with high-dimensional problems. Bi-
onics path planning algorithms include the ant colony algorithm [14], genetic algorithm 
[15], and particle swarm optimization algorithm [16]. Liu, Xinyu, et al. [17] proposed an 
automatic obstacle avoidance algorithm based on an ant colony algorithm and clustering 
algorithm to solve the problem of how to use multi-information integration to realize 
large-scale dynamic path planning at sea. Firstly, they matched different environmental 
complexities of the clustering algorithm, automatically selected the appropriate search 
scope and improved the path planning performance. Then, the path smoothing mecha-
nism was introduced to meet the USV feature constraints. At the same time, using the ant 
colony algorithm for local path planning and applying multi-source information position-
ing realized the designated waters adaptive recognition, obstacle warning, and dynamic 
obstacle avoidance path planning. However, the algorithm does not consider the influence 
of the marine environment and weather conditions, nor does it consider the kinematic 
constraints of the USV, which does not meet the requirements of the natural navigation 
environment. Ding F.et al. [18] proposed an efficient and energy-saving path-planning 
and path-tracking control method based on a particle swarm optimization algorithm for 
navigation safety and energy consumption in the complex ocean environment. They es-
tablished the USV motion mathematical model and marine environment mathematical 
model. Modeling, using electronic chart information and environmental information with 
appropriate objective function and constraint conditions, using the particle swarm opti-
mization algorithm, obtained the energy-saving path, real-time route replanning, and ad-
justment as weather conditions changed. Finally, they used a particle swarm optimization 
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algorithm to control the generated energy-saving path with potential induced degrada-
tion (PID). The optimal control parameters were obtained. The approximate method sets 
the ocean current as a constant and does not effectively consider the time-varying charac-
teristics of the ocean current. Sample-based path planning includes a rapidly-exploring 
random tree algorithm (RRT) [19]. Kamarry S et al. [20] generated a cost-effective path 
through the path planning algorithm of the RRT algorithm to meet the task requirements 
of linear time logic. The cost function includes the hazard level, energy consumption, and 
wireless connection. Reducing node redundancy and the number of discarded samples 
minimizes the tree growth’s processing time, and thus, the computational cost shortens 
the path length and saves energy. However, the RRT algorithm has great randomness, 
making the generated path unstable. 

Finally, energy-efficient path planning methods in other fields were summarized: 
Wang Y et al. [21] focused on the representation and avoidance strategies of obstacles in 
the task environment. They defined the obstacle area as an inner circle and an outer circle, 
and the area was divided according to the tangent line from the two loops to the starting 
point to limit the unmanned aerial vehicle’s (UAV) flight area so that the UAV could avoid 
the obstacle and achieve minimum propulsion energy consumption. A path planning 
method based on a multi-agent is proposed to generate feasible paths from candidate sets. 
Li, Deshi, et al. [22] used a genetic algorithm to traverse the energy consumption graph in 
3D in an outdoor environment to avoid local optimization. They combined the model with 
the energy consumption estimation equation as the input of the energy consumption 
graph to obtain the optimal energy path. Deepak N. [23] proposed a method based on the 
stochastic level set partial differential equations (PDEs) to calculate relative velocity and 
relative heading, rigorously predicting the optimal energy path in deterministic dynamic 
flows. It can be used to calculate the optimal energy path of the AUV time-optimal path 
in the dynamic flow field. Yu H et al. [24] proposed a fast marching method for AUV path 
planning in a large-scale three-dimensional environment. For AUV navigation path 
safety, fuel consumption, navigation, and other problems involving optimization model-
ing, it considers the collision risk between obstacles and mines, detection probability, nav-
igation depth, route length, and the maneuvering constraints of AUV, including a safe 
depth and turning radius. Yilmaz et al. [25] introduced a mixed-integer linear program-
ming (MILP) path planning algorithm to navigate multiple AUVs. However, the calcula-
tion time of this method will increase exponentially with the size of the problem, so the 
natural navigation environment will limit this method. Dynamic programming and MILP 
may not be computationally feasible when USV path planning is performed in a spatio-
temporal ocean current environments. 

Different types of algorithms were optimized to reduce energy consumption in the 
path planning research with energy consumption as the index above. However, maritime 
route planning faces more complex interference factors than UAVs and unmanned 
ground vehicles. The above algorithms do not comprehensively consider the influencing 
factors of USV navigation, such as the interaction between the ocean environment and the 
vessel and the processing ability of large data sets during navigation in a large sea area. 
Therefore, this paper proposed a dynamic energy-efficient path planning algorithm that 
considers the distance under the time-varying wind and current. A Voronoi diagram with 
high computational speed and maximum security is selected, inspired by Niu H et al. 
[4,10]. However, since the Voronoi diagram generates fewer turning points and navigable 
paths than other modeling methods [26], part of the extracted safe water depth points are 
included in the structure to generate more navigable paths. The environmental model is 
updated hourly to consider the temporal variation of tide, wind, and currents. In addition, 
the current and wind model was added to the dynamic model of the USV to establish the 
energy consumption model. The energy consumption is simulated in the same way as 
USV thrust work. Each waypoint’s energy value is effectively stored in the adjacency ma-
trix, making the subsequent path planning more convenient. The A* algorithm is im-
proved to search for a path with minor energy consumption and a short distance. Finally, 
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the path optimization algorithm reduces the waypoints. The dynamic energy-efficient 
path algorithm considers the distance, ensures low energy consumption, does not sacrifice 
a high distance cost, and improves the endurance of the USV. 

The structure of this paper is as follows: Section 2 describes the problems to be solved 
in energy-efficient path planning. Section 3 introduces the mathematical methods and 
model construction used in this paper in detail. In Section 4, the proposed method is ex-
perimentally verified. Section 5 is the experimental conclusion and future work. 

2. Question 
The following three problems must be considered when the USV carries out long-

distance operations at sea: 
• Long-distance navigation means an extensive spatial data set. It is essential to select 

an appropriate modeling method to reduce the computing time of large data sets, as 
introduced in Section 2.2. 

• The USV can not be simplified as a mass point, ignoring its motion characteristics, 
introduced in Section 2.3. 

• The influence of marine environmental factors on the USV and environmental factors 
changing with time must be considered when navigating a long distance. 

2.1. Assumptions 
To comprehensively consider the motion of the USV and the marine environment 

effect, the paper proposed the following hypotheses: 
• This paper studies global energy-efficient path planning and does not consider dy-

namic obstacles. 
• This paper first considers the impact of wind and current because of the complex 

effects of waves on the USV, assuming that the wind and current are constant within 
each hour. 

• The USV motion is specified in two-dimensional space. Hence the motion of the USV 
in roll, pitch, and heave direction was neglected. 

• The USV had neutral buoyancy, and the origin of the body-fixed coordinate was lo-
cated at the center of the mass. 

2.2. Large Data Set 
It is essential to select a suitable modeling method because of the substantial spatial 

data set required for USVs sailing. Standard space modeling methods include the grid, 
Voronoi diagram, and Visibility diagram [4]. The grid method requires the artificial set-
ting of grid accuracy, which often determines the final path planning effect. For example, 
high accuracy of grid setting requires a lot of operation time. The low precision of the 
setting will cause problems, such as a fuzzy environment and a rough route. Compared 
with the Visibility diagram, the Voronoi diagram has the advantages of fast computing 
speed and higher path security. It is more suitable for large spatial data sets [10]. The Vo-
ronoi diagram is selected to describe spatial object information in this paper. More im-
portantly, the improved Voronoi graph algorithm is more suitable for time-varying spa-
tial modeling. 

2.3. USV Model 
The USV will produce motion in six degrees of freedom when navigating: roll (X-

rotation) pitch (Y-rotation), yaw (Z-rotation), sway (sideways motion), surge (longitudi-
nal motion), and heave (vertical motion) [27]. As shown in Figure 1, there are two coordi-
nate systems, the earth-fixed coordinate system, and the body-fixed coordinate system. 
There is a transformation relationship between the two coordinate systems. For the high-
speed USV, the force and motion characteristics will be more prominent in the direction 
of six degrees of freedom. Therefore, it is necessary to analyze the motion characteristics 
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of the USV in different degrees of freedom rather than regard it as a particle. This paper 
simplifies the six degrees of freedom into three degrees in a two-dimensional plane: yaw, 
sway, and surge. The three degrees of freedom (3DOF) dynamics model of the USV is 
established to analyze its forces at sea. 

 
Figure 1. Motion variables for USV. 

2.4. Environment Effect 
The first step in path planning is to build an accurate environment model. The S-57 

chart extracts obstacle points to create an unnavigable area. The endurance of the USV is 
limited by the ocean environment (wind and current) in long-distance sailing. It is dan-
gerous to navigate against the wind and current. The USV will bear greater energy con-
sumption and even fail to reach the target point. Considering the influence of wind and 
current, the USV will automatically sail in the direction of weak wind and current, but it 
may sacrifice the distance. Therefore, considering energy efficiency and distance cost, it 
can ensure safe navigation, save energy consumption, and meet the mission requirements 
of long-distance navigation at sea. 

In this paper, the tide table of Dalian port on 20 July 2019, was obtained from the tide 
prediction table, as shown in Figure 2. In addition, the wind and current data were used 
in the Bohai Sea in July 2019. The range of the wind data is (119.0455° E–122.9318° E, 
36.0818° N–39.9659° N), which is obtained from the National centers for environment pre-
diction (NCEP) climate forecast system, version 2 (CFSv2) data. The current data was ob-
tained from the global hybrid coordinate ocean model (HUCOM) with the range (118.96–
122.96° E, 36–40° N). The current and wind data variables are shown in Tables 1 and 2. 

 
Figure 2. The tide table. 
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Table 1. The current data. 

Data Name Data Size Date Type Dimensions 
‘lat’ 101 ‘double’ 101 1×  double 
‘lon’ 51 ‘double’ 51 1×  double 

‘time’ 249 ‘double’ 249 1×  double 
‘water_u_bottom’ 51 101 249× ×  ‘int16’ 3D double 
‘water_v_bottom’ 51 101 249× ×  ‘int16’ 3D double 

Table 2. The wind data. 

Data Name Data Size Date Type Dimensions 
‘lat’ 20 ‘double’ 20 1×  double 
‘lon’ 20 ‘double’ 20 1×  double 

‘time’ 745 ‘double’ 745 1×  double 
‘wndewd’ 20 20 745× ×  ‘int16’ 3D double 
‘wnded’ 20 20 745× ×  ‘int16’ 3D double 

3. Methodology 
This chapter is mainly composed of the following parts: Section 3.1 describes the cen-

tral architecture of this article. Section 3.2 includes the method of data set extraction and 
the model construction process of the wind and current used in this paper. Section 3.3 
introduces the dynamics model of the USV to prepare for the subsequent energy con-
sumption model. Section 3.4 deduces the USV energy consumption in 3DOF, which is the 
major innovation part. The Voronoi diagram’s generation process and the improved Vo-
ronoi diagram algorithm are used to construct dynamic environment modeling, intro-
duced in Section 3.5. Section 3.6 introduces the division of timing breakpoints, the im-
proved A* algorithm and proposes a new optimization algorithm to reduce the way-
points. 

3.1. Algorithm Architecture 
As shown in Figure 3, based on the coastline contour data and water depth data of 

electronic charts, this paper describes spatial object information through the Voronoi dia-
gram and preliminarily builds a static navigation environment model. After interpolating 
tidal level information and the static water depth value, the dynamic safe water depth 
model is obtained using the improved Voronoi diagram algorithm. The mathematical 
model of wind and current is introduced into the linear dynamics model of the USV to 
construct the total energy consumption model. The timing breakpoint is planned accord-
ing to the general mission voyage to consider wind and current time variation. This paper 
applies an improved A* algorithm to replan the path according to the timing breakpoint 
to consider the distance costs and obtain the dynamic energy-efficient path that considers 
the distance. In the final path optimization stage, this paper carried out a new path opti-
mization to reduce the number of waypoints and smooth the path. 
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Figure 3. The proposed dynamic energy-efficient path planning architecture considers the distance 
algorithm. 

3.2. Environment Data Set 
This section introduces the basic theory used in deriving the energy consumption 

model. The marine environment is mainly composed of geographic information and ma-
rine hydrometeorological information. The geographic information is mainly coastline 
contour points introduced in Section3.2.1. Under the condition of safe obstacle avoidance, 
the hydrometeorological information of the USV has a significant influence on the navi-
gation movement, including wind, current, sea fog, tide, wind wave, surge wave, and 
water depth information. Because of the complexity of wave variation with time, this pa-
per mainly studies the relatively uniform and steady media of tidal, wind, and current, 
introduced in Sections 3.2.2, 3.2.3, and 3.2.4, respectively. We established the mathemati-
cal model of wind and current and analyzed the forces and torques acting on 3DOF. 

3.2.1. Coastline Data 
This paper studies global energy-efficient path planning. Accurate static obstacle 

modeling is essential. Compared with the Global Self-consistent High-Resolution Shore-
lines (GSHHS) data set, the coastline data set extracted from the S-57 electronic chart is 
more accurate and does not require obstacle swelling processing. The process of data ex-
traction is shown in Figure 4. 
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Figure 4. The S-57 Electronic Chart data reading flow. 

The specific process is: 
• Extracting header file information and object target information from the S-57 elec-

tronic chart file. 
• Continue to extract and analyze spatial information and attribute information. 
• The spatial and attribute information is converted into the longitude and latitude of 

obstacles and elevation values. 
In this paper, the No. C1513431 chart is used to extract the coastline coordinates. The 

coordinates of the lower-left corner of the sea area are (121.5667, 38.8067), and the upper 
right corner is (122.0833, 39.0833). The contours of the coastline before and after extraction 
are shown in Figure 5. 

  
(a) (b) 

Figure 5. (a) The S-57 Electricity Chart. (b) The coastline data was extracted from the S-57 electricity 
chart. 

3.2.2. Tide Data 
Tidal variation will constantly affect the bathymetric environment and the overall 

path planning result. This paper builds the dynamic navigation water depth model to 
obtain the natural navigation environment. At present, the public tide data contains the 
time and height. Based on the first law of geography, namely spatial correlation, the 
kriging interpolation method [28] is used to interpolate the tide data. The tide data ˆ ( )Z x  
corresponding to each water depth point is obtained: 

0
1

ˆ
n

i i
i

Z Zλ
=

=  (1)

where 0Ẑ  is the predicted tide value at point X and iλ  is the weight coefficient. The 
weighted sum of data of all known points in space is used to estimate the value of 
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unknown points, which satisfies a set of optimal coefficients with the slightest difference 
between the estimated value and the actual value at the point 0 0( , )x y . 

0 0
ˆmin ( ) 0

i

Var Z Z
λ

− =  (2)

Constructing cost function: 

1 0 1

ˆ= ( )

= ( , ) 2 ( , ) ( , )

o o
n n n

i j i j i i j o o
i j i

J Var Z Z

Cov Z Z Cov Z Z Cov Z Zλ λ λ
= = =

−

− + 
 (3)

Let ( , )ij i jC Cov Z Z=  the semi-variance function 2
ij ijCγ σ= −  and the constraint 

1
1

n

i
i

λ
=

=  obtain the function: 

1 1 0
=2 ( ) ( )

n n n

i io i j ij oo
i i j

J rλ γ λ λ γ
= = =

− −   (4)

Find the smallest group, and take the partial derivative of the constructor to list the 
matrix. 

Calculate the distance between each measuring point. The gaussian model is used as 
a variation function to obtain iλ . Finally, use Equation (1) to calculate the tide level of each 
point. The interpolation results obtained using the tide level value at high tide and low 
tide of Dalian Port are shown in Figure 6a, representing the interpolation tide level at high 
tide, and Figure 6b represents the interpolation tide level at low tide. 

  
(a) (b) 

Figure 6. (a) The interpolated tide level at high tide. (b) The interpolated tide level at low tide. 

3.2.3. Wind Data 
The immediate cause of the wind is the non-uniform distribution of air pressure in 

the horizontal direction due to the uneven temperature of the sea surface. Air flows from 
high pressure to low pressure. When the ship is sailing on the ocean, it will be affected by 
the force and moment of the wind, which will cause the ship to tilt, drift, and even stall. 
Therefore, the wind is one of the disturbance factors considered in ship motion modeling. 

In calculating the wind load, the wind speed should be determined first. The wind 
speed at an average sea level of 10 m should be selected. For the static USV, the force and 
moment produced by the wind load on 3DOF can be obtained using the incompressible 
Bernoulli Equation (5) [29]. The correlation coefficients are shown in Table 3. 
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( )
1 ( )
2

( )

wx X

w rw rw wy Y

wy N

S C
V V S C

S LC

γ
ρ γ

γ

 
 =  
  

w
Eτ  (5)

Table 3. Correlation coefficients of the Bernoulli equation. 

Coefficients Definition or Meaning (Unit) 

wρ  Air density 1.293 /w g Lρ =  
( )iC γ  Coefficient of air resistance ( ) 0.5iC γ =  

wψ  Absolute wind direction (deg) 

sψ  Heading angle (deg) 

wU  Absolute wind speed (m/s) 

rwV  Relative wind speed (m/s) 2 2 2
rw rw rwV u v= +  

rwv  
The horizontal component of relative wind speed 

(m/s) cos( )rw s w w sv v U ψ ψ= − −   

rwu  
The longitudinal component of relative wind speed 

(m/s) cos( )rw s w w su u U ψ ψ= − −   

su  Forward velocity (m/s) 

sv  Sway velocity (m/s) 

wxS  Vertical maximum wind area (m2) 
wyS  Horizontal maximum wind area (m2) 

L  Length overall (m) 

3.2.4. Current Data 
Ocean currents refer to the large-scale movement of seawater caused by changes in 

temperature, salinity, and density between different water qualities or by wind friction. 
They are essential physical phenomena in the marine environment. Current can be di-
vided into constant current, non-uniform current, steady current, and unsteady current 
according to the location and time characteristics. It needs complex theoretical derivation 
and many statistical experiments to be carried out on the uneven flow mathematical mod-
eling. To simplify the current model in this paper, assume that the speed of the current 
change is not too great and sharp. Without loss of generality, the currents are supposed 
to be steady and uniform. 

The force and moment of ocean current at USV with 3DOF are given: 

( )
1 ( )
2

( )

cx X

c rc rc cy Y

cx N

S C
V V S C

S LC

ζ
ρ ζ

ζ

 
 =  
  

c
Eτ  (6)

where cρ  is the standard seawater density. ( )iC ζ  is the acting force coefficient and act-
ing moment coefficient of ocean current, which are generally obtained by experiment or 
system identification. ciS  is the projected area of the ship’s horizontal and longitudinal 
axes below the waterline and rcV  is the relative velocity of the current: 

2 2 2
rc rc rcV u v= +  (7)

cos( )
sin( )

rc s c c s

rc s c c s

u u U
v v U

ψ ψ
ψ ψ

= − −
 = − −

 (8)

where rcu  and rcv  are the horizontal and longitudinal components of the relative cur-
rent velocity. cU  is the absolute current velocity and cψ  is the absolute current direc-
tion. 
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3.3. USV Dynamic Model 
The dynamic model of the USV should be established first to analyze the force of its 

motion in 3DOF. The forces and moments suffered by the USV include thrusters, hydro-
dynamic forces, and moments, and marine environmental interference forces. Assuming 
that its center of gravity is located at the mid-longitudinal section, the differential equation 
of the USV hydrodynamic model is obtained as follows: 

( ) ( ) T Ev v v v v τ τ+ + = +M C D  (9)

where M  is the symmetric positive definite inertia matrix, which is related to the ship’s 
linear velocity and angular acceleration: 

0 0
0 0
0 0

u

v

r

m X
m Y

I N

− 
 = − − 
 − 







M  (10)

( )vC  is the centripetal and Coriolis matrix, depending on the additional mass of the USV:  

0 0 ( )
( ) 0 0 ( )

( ) ( ) 0

v

u

v u

m Y v
v m X u

m Y v m X u

− − 
 = − 
 − − − 





 

C  (11)

( )vD  is the damping coefficient matrix: 

+ 0 0

( ) 0 0

0 0

u u u

v v v

r r r

X X u

v Y Y v

N N r

 
 
 = +
 

+  

D  (12)

The environmental load can be divided into wind load w
Eτ  and sea current load 

c
Eτ  and can be expressed as: 

w c
E E Eτ τ τ= +  (13)

3.4. USV Energy Consumption Model 
The USV travels at a speed of T[ , , ]u v r=v  at sea, and doing work to overcome the 

ocean environment consumes some of its energy. This paper substituted the mathematical 
Equations (5) and (6) into the linear dynamics model (9) to construct the total energy con-
sumption model of the USV. Assuming that the gravity center of the USV is at the body-
fixed coordinate system., the forces and moment provided by the propeller can be ob-
tained when the USV moves with 3DOF as follows: 

( ) ( ) - E Tv v v v v τ τ+ + =M C D  (14)

2 2

2 2
Y

2

1 1( ) ( ) ( ) ( ) ( )
2 2

1 1( ) ( ) ( ) ( ) ( )
2 2

1 1( ) ( ) ( ) ( ) ( )
2 2

X u u v w rw wx X c rc cx Xu u

v v u w rw wy Y c rc cy Yv v

N r r v u r r w rw wy Nr r

m X u X X u u m Y vr V S C V S C

m Y v Y Y v v m X ur V S C V S C

I N r N N r r m Y vu m X u v V S LC

τ ρ γ ρ ζ

τ ρ γ ρ ζ

τ ρ γ

= − + + − − − −

= − + + + − − −

= − + + + − − − − −

 

 

  





 2 ( )c rc cx NV S LCρ ζ

 (15)

where ,, ,X Y Zτ τ τ  represents the thrust of 3DOF. The dynamic parameters related to the 
above are shown in Table 4: 
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Table 4. Hydrodynamic coefficient and parameters. 

Hydrodynamic Coefficients 

uX   0 rN  3800 

vY  0 u uX  8.04 

rN   0 v vY  23 

uX  15.6 r rN  0 

vY  7600 I  980 2kg / m  

The energy consumption model of the USV under the wind and current can be ob-
tained. 

ab X Y N X ab Y ab N abE E E E x yτ τ τ ψ= + + = + +  (16)

where , ,X Y NE E E , respectively, represents the energy consumption of the USV in the 
motion of sway, surge, and yaw from point a  to point b. , ,ab ab abx y ψ , respectively, rep-
resents the distance and heading angle of the USV in unit movement, and the calculation 
process is as follows: 

2 2( ) ( )ab b a b ax x x y y= − + −  (17)

ab
ab

xy v
u

=  (18)

ab
ab

xr
u

ψ =  (19)

The calculated energy consumption value is stored in the adjacency matrix J, as 
shown in Table 5, ( , )E i j  is the energy consumption from point i  to j , and ( , )E j i  is 
the energy consumption from point j  to i . Note that ( , )E i j  and ( , )E j i  are not equal 
because the environmental data is a vector with different velocities in the opposite direc-
tion. 

Table 5. The node matrix J with energy consumption weight. 

  i   j   
 … Inf Inf Inf Inf 
i  Inf 0 Inf ( , )E i j  Inf 
 Inf Inf … Inf Inf 
j  Inf ( , )E j i  Inf 0 Inf 
 Inf Inf Inf Inf … 

3.5. Dynamic Safe Water Depth Model 
This section describes the generation principle of the dynamic Voronoi diagram. It 

includes three steps: the dynamic water depth model construction is introduced in Section 
3.5.1, the Voronoi graph generation principle is introduced in Section 3.5.2, and the im-
proved local Voronoi diagram is introduced in Section 3.5.3. 

3.5.1. Dynamic Water Depth Generation 
The dynamic water depth is calculated by the superposition of the water depth point 

and the interpolated tide: 
ˆ( , ) ( , ) ( , ) ( , )D x y Z x y Z x y x y= + +   (20)
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where ( , )D x y  is the actual water depth of the point ( , )x y  within one hour, ( , )Z x y  
is the water depth point extracted from the S-57 chart. ˆ ( , )Z x y  is the tide of the point, 
and ( , )x y  is the water depth change caused by other factors affecting the water level 
change of the point within one hour. 

The minimum safe water depth is assumed to be 5 m, considering the performance 
of the USV and the tidal variation. Each hour’s dangerous water depth points are included 
in the obstacle set, applying the alpha shape algorithm to detect the edge points. Figure 
7a is the initial coastline. Figure 7b–f is the model of safe water depth within five hours. It 
can be seen that the water depth does not change significantly in the first two hours. How-
ever, with the rise of tide level, the safe water depth area expands significantly, as marked 
in the rectangle. 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Hourly safe water depth environment model: (a) represents the initial coastline; (b–f) rep-
resent a safe water depth environment model for five hours. 

3.5.2. Voronoi Diagram Generation 
The Voronoi diagram consists of a set of contiguous polygons. These edges are per-

pendicular bisectors of two adjacent points. It is widely used in geometry, architecture, 
geography, meteorology, and many other fields. 

Suppose there exists a set 1 2{ , , , }nS s s s=   containing n  points on the Euclidean 
plane Ω , where 2 n≤ < ∞ . The Cartesian coordinates of these n  points are 

11 12 21 22 1 2{( , ), ( , ), , ( , )}n ns s s s s s and do not overlap. The pointsSare called sites, sorted from 
left to right and top to bottom, and connected to adjacent sites to form a convex hull tri-
angulation network, as shown in Figure 8a. The Voronoi point is the center of the circum-
ferential circle of each triangle. The connection of each Voronoi point is the Voronoi edge. 
They are stored in DCEL data structures. If x  is the point in Euclidean space and the 
coordinate is 1, 2( , )x x , then the distance between the point x  and another site 

, 1, 2,is S i n∈ =   is 

2
1 1 2 2( , ) ( ) ( )i i i id x s x s x s x s= − = − + −  (21)

If is S∈  is the nearest site or one of them, ,j ns S j I∈ ∈  satisfies ( , ) ( , )i jd x s d x s<  
for any other point. The set of all qualified x  is called the original Voronoi region con-
trolled by is , and is expressed as: 
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( ) { | ( , ) ( , ), , }i i j nVor s x d x s d x s i j j I= ≤ ≠ ∈  (22)

As shown in Figure 8b, the set composed of all site control areas is defined as the 
original Voronoi diagram: 

( ) { ( ), , ( )}i nVor S Vor s Vor s=   (23)

The dividing line of the area controlled by two different sites is a vertical bisector 
perpendicular to the connection line is  and js , dividing the plane into two parts. Points 
within each site’s control area are less distant from that point than from the other site. 
Therefore, Voronoi modeling can maximize the use of gaps between obstacles so that the 
maximum distance of the route is far away from the obstacle, ensuring navigation safety. 

The Voronoi diagram used for path planning environment modeling needs to be fur-
ther improved and optimized. The Voronoi edge passing through the obstacle area needs 
to be deleted. First, delete all Voronoi edges connected to the Voronoi point set in the 
obstacle area. Then, judge whether there are still Voronoi edges passing through the ob-
stacle area. If so, delete the edge and obtain the collision-free Voronoi diagram, as shown 
in Figure 8c. 

   

(a) (b) (c) 

Figure 8. Voronoi graph generation: (a) represents Delaunay triangulation; (b) represents the Voro-
noi roadmap. (c) Collision-free roadmap. 

Finally, n  vertices of Voronoi graphs that meet navigation requirements are stored 
in an adjacency matrix J of N N× , which stores the connection information of navigable 
edges. Assuming that vertex i  and vertex j  are connected, the adjacency matrices 

( , )J i j  and ( , )J j i  are set to 1, as shown in Table 6. Otherwise, infinity Inf is set. The 
diagonal of the matrix is set to 0. 

Table 6. The node matrix J. 

  i   j   
 … Inf Inf Inf Inf 
i  Inf 0 Inf 1 Inf 
 Inf Inf … Inf Inf 
j  Inf 1 Inf 0 Inf 
 Inf Inf Inf Inf … 

3.5.3. Improved Voronoi Diagram Algorithm 
The safe water depth area is dynamically updated according to the tide data, and the 

Voronoi diagram also needs to be updated. However, regenerating the global Voronoi 
diagram will undoubtedly cause computational redundancy. Therefore, this paper adopts 
an incremental approach to construct a new cell. As shown in Figure 9, the new site is now 
inserted into the original Voronoi diagram. First, find the cell where the insertion site is 
located in the DCEL data structure. Connect the insertion site to Site0 and make a vertical 



J. Mar. Sci. Eng. 2022, 10, 759 16 of 27 
 

 

bisector at points a  and b. Transition to the cell region where the two intersections are 
located and use the same method to obtain c  and d until the closed polygon abcd  is 
formed, creating the cell region belonging to the site, as shown in the yellow region: 

 
Figure 9. The improved Voronoi diagram algorithm. a, b, c and d represent the intersection of the 
new Voronoi cell with the original Voronoi edge. 

3.6. Voronoi Energy-Efficient Path Generation 
The energy-efficient path planning algorithm based on the Voronoi diagram consists 

of the following three parts: setting timing breakpoint, an improved A* algorithm, and a 
new path optimization algorithm. 

3.6.1. Set Timing Breakpoints 
Marine environmental data for this paper are updated hourly, by setting timing 

breakpoints for the originally generated path based on the update time. As shown in Fig-
ure 10, the blue line represents the initially generated energy consumption path by the 
improved A* algorithm. The red dots represent the timing breakpoints. Figure 10a repre-
sents the timing breakpoint of the first hour, and Figure 10b represents the timing break-
points of the second hour. Figure 10c represents the timing breakpoints of the third hour. 
When the USV navigates to the timing breakpoint of the first hour, it updates the marine 
environment data (using the data in the second hour) to plan a dynamic energy-efficient 
path. 

Setting a timing breakpoint that is dynamically updated by marine environmental 
data can be considered, which is more conducive to the USV navigating for a long time at 
sea. 

   
(a) (b) (c) 

Figure 10. The breakpoint of a minimal energy-consuming path. (a) The breakpoint for the first 
hour. (b) The breakpoint for the second hour. (c) The breakpoint for the third hour. 
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3.6.2. The Improved A* Search Algorithm 
The cost function of the traditional A* algorithm is composed of the actual cost func-

tion and heuristic function, which can search for the shortest path quickly and effectively. 
In this paper, the traditional A* algorithm is improved to replan the energy-efficient path 
considering the distance under wind and current influence. The actual cost function eval-
uates the energy consumption of the path, and the heuristic function evaluates the shortest 
distance of the path. This path planning with comprehensive consideration of energy con-
sumption and distance can be obtained. The cost function of the A* algorithm is: 

min min

max min max min

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

e x e x h x h xf x
e x e x h x h x

− −
= +

− −
 (24)

where ( )e x  is the energy consumption function from the initial point to the middle point. 
( )h x  is the heuristic function, defined as the distance between the middle and the arrival 

points. The calculation of the distance:  

1 2 1 2 1 2* cos(cos( ) *cos( ) * cos( ) sin( ) *sin( ))dis R ar y y x x y y= − +  (25) 

The energy consumption and heuristic functions are normalized to obtain dimen-
sionless data, convenient for subsequent operations. The improved A* algorithm pseudo-
code is as followed (Algorithm 1): 

Algorithm 1 The improved A* algorithm pseudocode 
Function path=A_star(START, GOAL, J) 

( ) infcf x ← // ( ) ( ) ( )c c cf x e x h x= + is a total cost of current node cx , where ( )ce x is an energy 
consumption from START to cx and ( )ch x is a heuristic cost form cx to GOAL. 

START OPEN∈  
While OPEN is not empty 
if GOALcx =  
Break 
end 

CLOSEDcx ∈  
for each neighbor vx of cx  
if CLOSEDvx ∉  
Cost( ) ( ) Cost( )v c vx e x x← + //the edge cost of vx  
if OPEN && Cost( ) ( )v c vx x e x∉ <  

( ) Cost( )v ce x x←  
( )vh x ← heuristic cost of vx  
( ) ( ) ( )v v vf x e x h x← +  

( )v cParent x x←  
if OPENvx ∈  
OPEN. ( )vremove x  
end 
end 
end 
end 

( )path Parent path← //path is generated by connecting the parent nodes starting from GOAL 
note. 
end 

3.6.3. The Path Optimization Algorithm 
Although the number of navigable paths is increased by constructing the Voronoi 

diagram with discrete, safe water depth points, it also causes many inflection points and 
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uneven paths, which do not meet the requirements of sea navigation. Therefore, the gen-
erated energy-efficient path will be smoothly optimized. 

Traditional optimization algorithms cannot be used to optimize the path because of 
the lower energy consumption of the initial energy-efficient path. These algorithms will 
cause the problem that the optimized path still consumes much energy. As shown in Fig-
ure 11, it is assumed that the USV will sail from node 1x  to node 2x  through a turning 
point 3x . First, calculate whether the distance between the middle node 2x  and the two 
nodes exceeds the preset threshold ε . If the distance does not exceed the threshold, delete 
nodes 2x  and directly connect the first and last nodes to form a new path. If the thresh-
old is exceeded, move the intermediate node to qx  with the distance of ε . Reconnect 
node 1x , node qx , and node 3x  again to create a new path. 

 
Figure 11. The path optimization algorithm. 

As shown in Figure 12a, the blue line represents the path before optimization, and 
the number of nodes is 41. The black line represents the optimized path, and the number 
of nodes is 21. The number of nodes is reduced by 50%. However, the turning angle still 
does not meet the requirements of precise navigation maneuvering. The paper applies a 
uniform B-spline curve to smooth the steering angle, and the B-spline curve equation can 
be written as: 

,
0

( ) ( )
n

i i k
i

f u PN u
=

=  (26)

where ( 0,1, )iP i n=   is the coordinate of a path node, , ( 0,1, )i kN i n=   is the standard 
B-spline basis function of k  degrees, and the highest degree is k . The Cox-de Boor re-
cursive equation is usually adopted: 

1
,0

1
, , 1 1, 1

1 1

1 if
( )

0, otherwise

( ) ( ) ( )

i i
i

i i k
i k i k i k

i k i i k i

u u u
N u

u u u uN u N u N u
u u u u

+

+ +
− + −

+ + + +

 ≤ ≤
= 

 


− − = + − −

，

 (27)

where i  is the node serial number and u  is the node vector, which can be generated by 
using the linspace  function of Matlab. Set 2, 20k n= =  to obtain the path as shown in 
Figure 12b. The blue dots represent the waypoints. The orange line represents the final 
path after optimization, indicating that the smoothness has been improved. 
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(a) (b) 

Figure 12. Path smoothing effect. (a) Comparison between waypoint and before optimization. The 
blue line represents the path before optimization, and the red line represents the optimized path. 
(b) The action of the B-spline curve. The blue dots represent the waypoints and the orange line 
represents the final path after optimization. 

4. Simulation Results and Discussion 
To verify the effectiveness of the proposed energy-efficient path planning algorithm, 

simulation experiments are carried out on Matlab2019 (Windows10, Intel (R) Core (TM) 
i7-10710u CPU @ 1.10 GHz 1.61 GHz, memory 16 G). Firstly, the start point (121.8929, 
38.8334) and the arrival point (121.7552, 38.9470) are set. The basic parameters of the USV 
are shown in Table 7. The original current and wind data are shown in Tables 1 and 2. 
After interpolation, the average current velocity of Dalian Bay is 2m/s; the average wind 
speed is 7m/s. The wind and current direction are mainly east and south. The tidal data 
were collected from 8:00 to 12:00 on 20 July 2019. 

Table 7. Basic parameters of USV. 

Quality (kg) Length Overall (m) Beam (m) Draft (m) 
200 6.75 2.3 1.5 

4.1. Energy Saved in Favorable Situation and Counter Situation 
This section analyzes the energy saved of the minimal energy-consuming path (the E 

path) in favorable and counter situations and does not consider the variation of ocean data 
and distance costs. Set the speed of the USV to 2.1 m/s. The E path and the shortest path 
are obtained, respectively, in favorable and counter situations, and the data are shown in 
Table 8. 

Table 8. The data of the minimal energy-consuming path and the shortest path in favorable and 
counter situations. 

The E Path 
Costs in 

the 
Favorable 
Situation 

The Shortest 
Path Costs 

in the 
Favorable 
Situation 

The E Path 
Lengths in 

the 
Favorable 
Situation 

The Shortest 
Path Lengths 

in the 
Favorable 
Situation 

The E Path 
Costs in 

the 
Counter 
Situation 

The 
Shortest 

Path Costs 
in the 

Counter 
Situation 

The E 
Path 

Lengths 
in the 

Counter 
Situation 

The 
Shortest 

Path 
Lengths in 

the 
Counter 
Situation 

401.6 KJ 547.81 KJ 24,699 m 20,669 m 499.63 KJ 560.27 KJ 27 km 20.67 km 

Figure 13a,b represents the E path and the shortest path under a favorable situation. 
The E path automatically plans the voyage to the place where the wind and currents are 
weak. Figure 14c shows both paths’ energy consumption over time under favorable 
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conditions. The shortest path consumes a short time, but the energy distribution is very 
concentrated. Although the distance and planning time of the E path is longer than the 
shortest path, the energy efficiency is increased by 27%. In Figure 14d,e, switch the start 
and arrival points to generate the E path and the shortest path under the contour situation. 
The E path consumes 499.63 kJ of energy, while the shortest path consumes 560.27 kJ of 
energy. The energy saved is only 11%, which is much lower than favorable conditions. 
Because the relative wind and current speed are low in a favorable situation, the energy 
consumption is relatively low; therefore, the USV can best use favorable current and wind. 
However, as is shown in Figure 14f, the energy consumption of the E path is higher in a 
counter situation, which is not much different from the energy consumed by the shortest 
path. 

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 13. Comparison between the minimal energy-consuming path and the shortest path. (a,b) 
Comparison between the minimal energy-consuming path and the shortest path in a favorable sit-
uation. (c) represents the energy consumption over time in a favorable situation. (d,e) Comparison 
between the minimal energy-consuming path and the shortest path under a counter situation. (f) 
represents the energy consumption over time in a contour situation. 
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4.2. Energy Saved at Different Speeds of USV 
USVs encounter different environmental resistance and consume different energy 

when sailing at different speeds. To study the energy consumption of the USV at different 
speeds, the speed of the USV is set as 2.1 m/s, 3.04 m/s, 4.08 m/s, and 5.05 m/s, respectively. 
Simulations in different situations analyze the energy-saving rate of the E path. The sim-
ulation results are shown in Figure 14. The blue line represents the energy-saving rate 
under favorable conditions, and the red line represents the energy-saving rate under 
counter conditions. As the USV speed increases, so does the static water resistance. More 
energy is required to overcome static water resistance. Meanwhile, the energy-saving rate 
of favorable situations is higher than that of counter conditions, which is further verified 
by 4.1. 

 
Figure 14. The energy-saving rate at different speeds of USV under different situations. 

4.3. Dynamic Energy-Efficient Path Planning Considers the Distance 
4.3.1. Comparison between the Dynamic ED Path and the Shortest Path 

The USV is affected by time-varying environmental factors when it sails for a long 
time. To analyze the influence of wind, current, and tide in each time bucket, this paper 
planned an hourly dynamic energy-efficient path that considered the distance between 
the start point (121.8929, 38.8334) and the arrival point (121.7552, 38.9470). 

Set the USV speed to constant 2.1m/s. The path is divided into four-time segments. 
The energy-efficient path is constructed based on the environment information in each 
time segment. Firstly, the dynamic, safe water depth model needs to be built according to 
the tide data. Extract water depth points less than 5 m and put them into the coastline set 
to build the dynamic, safe water depth model using the improved Voronoi diagram algo-
rithm. Figure 7 of Section 3.5.1 shows that the tide does not change much during the first 
two hours. Thus, the environment model for the first hour is approximated to replace the 
previous two hours. Secondly, set a timing breakpoint based on the initial path, already 
mentioned in Section 3.6.1. 

Finally, combined with each hour’s wind and current data (assuming that when the 
USV enters the second-hour voyage planning, the wind and current data of the second 
hour shall be used for replanning), the dynamic energy-efficient path considers the dis-
tance (the dynamic ED path) generated by applying the improved A*algorithm, shown as 
the blue line in Figure 15a. The red line represents the hourly dynamic minimal energy-
consuming path (the dynamic E path). The dynamic ED path saves energy and shortens 
the overall range compared to the dynamic E path. In Figure 15b, the blue line represents 
the dynamic ED path without timing breakpoints. The orange line represents the shortest 
path. The changes in energy consumption over time of the three paths are shown in Figure 
15c. The dynamic E path consumes the most energy, while the dynamic ED path consumes 
the least energy. 
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(a) (b) 

 
(c) 

Figure 15. (a) Comparison between hourly dynamic energy-efficient path considers the distance and 
hourly minimal energy-consuming path. (b) Comparison between hourly dynamic energy-efficient 
paths considers the distance and the shortest path; (c) represents the energy consumption over time 
of three paths. 

Compared with the shortest path, the energy consumption per hour is shown in Ta-
ble 9. The total range of the dynamic ED path is 21,929 m. The shortest path is 21,390 m. 
The dynamic E path has a range of 22,976.9 m. The energy-saving rate of the dynamic E 
path is 25% higher than that of the shortest path, however, it takes a longer time. The 
energy saved depends on the relative wind speed and current velocity of the extra time, 
so the energy saved may be very low or even harmful. Therefore, the cost of the distance 
must be considered when planning an energy-efficient path. Compared with the shortest 
path, the total voyage of the dynamic ED path has little change and the energy-saving rate 
increases by 12%. The result of planning has a more practical application value. 

Table 9. Comparison of hourly dynamic energy-efficient path considers the distance, the shortest 
path, and hourly minimal energy-consuming path. 

Mission Time Path Start Point Arrival Point Energy Consumption (KJ) Distance (km) 

9:00 
The dynamic ED path (121.8929, 38.8334) (121.8333, 38.8463) 194.02 7.27 

The shortest path (121.8929, 38.8334) (121.8512, 38.8667) 420.12 8.07 
The dynamic E path  (121.8929, 38.8334) (121.8175, 38.8461) 222.24 8.19 

10:00 
The dynamic ED path (121.8333, 38.8463) (121.7846, 38.8952) 436.1 7.74 

The shortest path (121.8512, 38.8667) (121.7885, 38.9139) 380.88 6.99 
The dynamic E path (121.8175, 38.8461) (121.7636, 38.8710) 220.19 5.17 

11:00 
The dynamic ED path (121.7846, 38.8952) (121.7552, 38.9470) 316.3 6.91 

The shortest path (121.7885, 38.9139) (121.7552, 38.9470) 277.1 6.32 
The dynamic E path (121.7636, 38.8710) (121.7675, 38.9318) 331.56 7.44 

12:00 The dynamic E path  (121.7675, 38.9318) (121.7552, 38.9470) 31.3 2.17 

Finally, the dynamic ED is optimized. The number of waypoints before the optimi-
zation is 41, and the number after optimization is 21, significantly reducing the number of 
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waypoints. Meanwhile, the turning angle of each waypoint is optimized to obtain the final 
dynamic energy-efficient path considering the distance, as shown in Figure 16a. Figure 
16b shows the relationship between position and time of the USV, including latitude and 
longitude coordinates and the steering angle. It can be seen from the simulation results 
that the steering change is reasonable when it advances to the arrival point. The target 
was reached in two and a half hours, taking into account time-varying ocean data. 

 

(a) (b) 

Figure 16. Where (a) represents the hourly dynamic energy-efficient path and considers the distance 
after optimization. (b) Simulation results of positions of USV concerning time. 

The mission of changing voyage is shown in Table 10. In mission 4, the USV voyage 
can be demonstrated under cross-wind and cross-current. The energy-saving rate is lower 
than that under the favorable situation in mission 1, showing that the greater the interfer-
ence of the external environment, the greater the energy consumption and the lower the 
energy-saving rate of the USV. 

Table 10. Comparison of hourly dynamic energy-efficient path considers the distance and the short-
est path. 

No. Start Point Arrival Point Speed(m/s) 
Dynamic 
ED Path 
Cost (KJ) 

The Shortest 
Path Energy 

Cost (KJ) 

Dynamic ED 
Path Length 

(km) 

The Shortest 
Path Length 

(km) 

Energy 
Saved (%) 

1 (121.8929, 38.8334) (121.7552, 38.9470) 2.1 946.42 1078.1 22 21.4 12 
2 (121.8929, 38.8334) (121.7552, 38.9470) 3.04 852.69 934.52 24.6 20.7 8.7 
3 (121.8929, 38.8334) (121.7552, 38.9470) 4.08 635.68 695.4 23.6 20.7 8.5 
4 (121.7633, 38.8988) (121.9399, 38.9112) 2.1 609.71 669.61 19.6 18.9 8.9 

4.3.2. Comparision between the Dynamic ED Path and the VVEE Path 
The dynamic ED path is compared and analyzed with the VVEE algorithm proposed 

in reference [10] to verify the algorithm’s effectiveness in this paper. The VVEE algorithm 
only considers the effect of ocean currents. This paper will compare the energy and path 
length consumed by the two algorithms under the influence of ocean currents and the 
constraints on USV motion. Furthermore, with setting the same size data set, the simula-
tion result is shown in Figure 17. The blue line represents The dynamic ED path proposed 
in this paper. The green line represents the VVEE path. The simulation data is listed in 
Table 11. It is found that the dynamic ED path increases by 37% compared with the VVEE 
path in terms of energy consumption. The VVEE path uses favorable ocean currents and 
dramatically reduces energy consumption. However, The dynamic ED path proposed in 
this paper considers the current variation and distance cost, which shortens by 9% and is 
more consistent with the actual application situation. As the current velocity increases 
over time, the energy consumption of the dynamic ED path increases. These two algo-
rithms are excellent in terms of time. The path can be successfully planned for the next 



J. Mar. Sci. Eng. 2022, 10, 759 24 of 27 
 

 

few hours in seconds. It can be seen that these two algorithms are suitable for large data 
set operations. 

Table 11. Comparison between the dynamic ED path and the VVEE path. 

Index The Energy Cost (KJ) The Path Length (km) The Calculation Time (s) 
The dynamic ED path 139.4 16.2 2.3 

The VVEE path 87 17.8 2.9 

The VVEE algorithm has fewer constraints than the proposed algorithm in this paper. 
The algorithm in this paper considers wind, current, and tide changes based on the VVEE 
algorithm. The stress of 3DOF for the USV is analyzed. The A* algorithm is improved to 
obtain the energy-efficient path that considers the distance, which is more in line with the 
navigation needs. 

 
Figure 17. Comparison between the dynamic ED path and the VVEE path. 

5. Conclusions 
Based on measured marine environmental information, an hourly dynamic energy-

efficient path considering the distance is proposed, which mainly includes the following 
parts: 
1. Extract coastline coordinates and static water depth data from the S-57 electronic 

chart, using the Voronoi diagram to build a model that conforms to the natural nav-
igation environment.  

2. The dynamic, safe water depth model is constructed using the improved Voronoi 
diagram after superposing the interpolated tide data with the static water depth data.  

3. The influence of wind and currents on the USV during the operation period should 
be fully considered. The total energy consumption model is constructed by combin-
ing the mathematical models of wind and current and the dynamics model of the 
USV.  

4. The time breakpoints are planned according to the distance of the general mission to 
consider the time-varying wind and current. The improved A* algorithm replicates 
the path according to the timing breakpoint. The dynamic energy-efficient path con-
siders the distance obtained.  
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5. This paper proposes a new optimization algorithm for the dynamic energy-efficient 
path that considers the distance to reduce the number of waypoints and smooth the 
path. 
According to the simulation results, the following conclusions are drawn: 

1. A comparative analysis is made between the minimal energy-consuming path and 
the shortest path in a favorable situation without considering the distance. The min-
imal energy-consuming path takes advantage of a friendly environment to reduce 
energy consumption to the greatest extent. However, the distance cost is relatively 
high. In the counter situation, the difference in energy consumption between the min-
imal energy-consuming path and the shortest path is slight. The relative wind speed 
and current velocity in the counter situation are significant, resulting in a low energy- 
saving rate. 

2. Secondly, the energy-saving rate of the minimal energy-consuming path under dif-
ferent speeds is analyzed. In any marine environment, the higher the speed, the lower 
the energy efficiency. Because of the significance of the static water resistance of the 
USV at high speed, the more work it does to overcome static water resistance. The 
greater the energy consumption, the lower the corresponding energy-saving rate. In 
addition, compared with the counter situation, more energy can be saved, and the 
energy-saving rate is higher in a favorable situation. 

3. This paper defines time breakpoints for path replanning to obtain an hourly dynamic 
energy-efficient path that considers the distance and the shortest path. Under the 
premise that the planning of the distance is similar, the energy-saving rate increases 
by 12%. Although the energy-saving rate is not as high as the minimal energy-con-
suming path, this paper comprehensively considers the distance and energy con-
sumption factors. It is more in line with the actual navigation requirements. 

4. The analyzed dynamic energy-efficient path considers the distance and the shortest 
path under different speeds. It was found that the higher the speed, the more de-
creased the energy-saving rate. 

5. It also increases the energy-saving rate under cross-wind and cross-flow, which is 
still lower than that under a favorable situation. 

6. The proposed method is compared with another method in energy consumption, 
planning time, and path length. The energy consumption of the proposed method is 
higher than that of another method because the current variation and path length 
cost is considered. In addition, it performs better in planning time and has short dis-
tances. In addition, the proposed algorithm can take marine environmental changes 
into more comprehensive consideration. It is necessary to plan a dynamic energy-
efficient path on a long voyage, which can improve the endurance of the USV and 
save a lot of energy consumption. 
This paper briefly discusses energy-efficient path planning under the influence of 

wind and current. However, there are still the following problems: it is roughly assumed 
that the wind, current, and tide change by the hour, which does not achieve dynamic 
planning in an absolute sense. Apart from that, the impact of waves on the hull needs to 
be considered. Due to the lack of experimental conditions, there is no physics experiment 
result verification. Further research will be carried out on the above issues in the future. 
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